
OpenMP Overview
Christian Terboven

1

OpenMP Tutorial

Christian Terboven
IT Center, RWTH Aachen University
Head of the HPC Group
terboven@itc.rwth-aachen.de

Dirk Schmidl
IT Center, RWTH Aachen University
Member of the HPC Group
schmidl@itc.rwth-aachen.de

OpenMP Overview
Christian Terboven

2

OpenMP Overview
IWOMP Tutorial: October 5th, 2016

Members of the OpenMP Language Committee

Christian Terboven

OpenMP Overview
Christian Terboven

3

Core Concepts
 Synchronization

OpenMP Overview - Topics

OpenMP Overview
Christian Terboven

4

Defining Parallelism in OpenMP

!$omp parallel [clause[[,] clause] ...]

"this code is executed in parallel"

!$omp end parallel (note: implied barrier)

#pragma omp parallel [clause[[,] clause] ...]
{

"this code is executed in parallel"

} // End of parallel section (note: implied barrier)

A parallel region is a block of code executed by
all threads in the team

OpenMP Overview
Christian Terboven

5

The OpenMP Execution Model
Fork and Join ModelMaster

Thread

Worker
Threads

Parallel
region

Synchronization

Parallel
region

Worker
Threads

Synchronization

OpenMP Overview
Christian Terboven

6

The Worksharing Constructs

 The work is distributed over the threads
 Must be enclosed in a parallel region
 Must be encountered by all threads in the team, or none at all
 No implied barrier on entry
 Implied barrier on exit (unless the nowait clause is specified)
 A work-sharing construct does not launch any new threads

#pragma omp for
{

....
}

!$OMP DO
....

!$OMP END DO

#pragma omp sections
{

....
}

!$OMP SECTIONS
....

!$OMP END SECTIONS

#pragma omp single
{

....
}

!$OMP SINGLE
....

!$OMP END SINGLE

OpenMP Overview
Christian Terboven

7

The Single Directive

!$omp single [private][firstprivate]
<code-block>

!$omp end single [copyprivate][nowait]

Only one thread in the team executes the code enclosed

#pragma omp single [private][firstprivate] \
[copyprivate][nowait]

{
<code-block>

}

OpenMP Overview
Christian Terboven

8

The OpenMP Memory Model

 All threads have access
to the same, globally
shared memory

 Data in private memory
is only accessible by the
thread owning this
memory

 No other thread sees
the change(s) in private
memory

 Data transfer is through
shared memory and is
100% transparent to the
application

T

private
memory

T
private

memory

T T
private

memory

private
memory

T
private

memory

Shared
Memory

OpenMP Overview
Christian Terboven

9

Need to get this right
Part of the learning curve

 Private data is undefined on entry and exit
Can use firstprivate and lastprivate to address this

 Each thread has its own temporary view on the data
Applicable to shared data only
Means different threads may temporarily not see the same

value for the same variable ...
Let me explain

Gotcha’s

OpenMP Overview
Christian Terboven

10

The Flush Directive

X = 0
while (X == 0)
{

“wait”
}

X = 1

Thread A Thread B

If shared variable X is kept within a register, the modification
may not be made visible to the other thread(s)

OpenMP Overview
Christian Terboven

11

 Strongly recommended: do not use this directive
… unless really necessary. Really .
Could give very subtle interactions with compilers
If you insist on still doing so, be prepared to face the

OpenMP language lawyers

 Implied on many constructs
A good thing
This is your safety net

About The Flush

OpenMP Overview
Christian Terboven

12

 Several constructs have an implied barrier
This is another safety net (has implied flush by the way)

 In some cases, the implied barrier can be left out
through the “nowait” clause

 This can help fine tuning the application
But you’d better know what you’re doing

 The explicit barrier comes in quite handy then

The OpenMP Barrier

!$omp barrier#pragma omp barrier

OpenMP Overview
Christian Terboven

13

 To minimize synchronization, some directives
support the optional nowait clause
If present, threads do not synchronize/wait at the end of

that particular construct
 In C, it is one of the clauses on the pragma
 In Fortran, it is appended at the closing part of the

construct

The Nowait Clause

!$omp do
:
:

!$omp end do nowait

#pragma omp for nowait
{

:
}

	OpenMP Tutorial
	OpenMP Overview
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13

