
OpenMP Overview
Christian Terboven

1

OpenMP Tutorial

Christian Terboven
IT Center, RWTH Aachen University
Head of the HPC Group
terboven@itc.rwth-aachen.de

Dirk Schmidl
IT Center, RWTH Aachen University
Member of the HPC Group
schmidl@itc.rwth-aachen.de

OpenMP Overview
Christian Terboven

2

OpenMP Overview
IWOMP Tutorial: October 5th, 2016

Members of the OpenMP Language Committee

Christian Terboven

OpenMP Overview
Christian Terboven

3

Core Concepts
 Synchronization

OpenMP Overview - Topics

OpenMP Overview
Christian Terboven

4

Defining Parallelism in OpenMP

!$omp parallel [clause[[,] clause] ...]

"this code is executed in parallel"

!$omp end parallel (note: implied barrier)

#pragma omp parallel [clause[[,] clause] ...]
{

"this code is executed in parallel"

} // End of parallel section (note: implied barrier)

A parallel region is a block of code executed by
all threads in the team

OpenMP Overview
Christian Terboven

5

The OpenMP Execution Model
Fork and Join ModelMaster

Thread

Worker
Threads

Parallel
region

Synchronization

Parallel
region

Worker
Threads

Synchronization

OpenMP Overview
Christian Terboven

6

The Worksharing Constructs

 The work is distributed over the threads
 Must be enclosed in a parallel region
 Must be encountered by all threads in the team, or none at all
 No implied barrier on entry
 Implied barrier on exit (unless the nowait clause is specified)
 A work-sharing construct does not launch any new threads

#pragma omp for
{

....
}

!$OMP DO
....

!$OMP END DO

#pragma omp sections
{

....
}

!$OMP SECTIONS
....

!$OMP END SECTIONS

#pragma omp single
{

....
}

!$OMP SINGLE
....

!$OMP END SINGLE

OpenMP Overview
Christian Terboven

7

The Single Directive

!$omp single [private][firstprivate]
<code-block>

!$omp end single [copyprivate][nowait]

Only one thread in the team executes the code enclosed

#pragma omp single [private][firstprivate] \
[copyprivate][nowait]

{
<code-block>

}

OpenMP Overview
Christian Terboven

8

The OpenMP Memory Model

 All threads have access
to the same, globally
shared memory

 Data in private memory
is only accessible by the
thread owning this
memory

 No other thread sees
the change(s) in private
memory

 Data transfer is through
shared memory and is
100% transparent to the
application

T

private
memory

T
private

memory

T T
private

memory

private
memory

T
private

memory

Shared
Memory

OpenMP Overview
Christian Terboven

9

Need to get this right
Part of the learning curve

 Private data is undefined on entry and exit
Can use firstprivate and lastprivate to address this

 Each thread has its own temporary view on the data
Applicable to shared data only
Means different threads may temporarily not see the same

value for the same variable ...
Let me explain

Gotcha’s

OpenMP Overview
Christian Terboven

10

The Flush Directive

X = 0
while (X == 0)
{

“wait”
}

X = 1

Thread A Thread B

If shared variable X is kept within a register, the modification
may not be made visible to the other thread(s)

OpenMP Overview
Christian Terboven

11

 Strongly recommended: do not use this directive
… unless really necessary. Really .
Could give very subtle interactions with compilers
If you insist on still doing so, be prepared to face the

OpenMP language lawyers

 Implied on many constructs
A good thing
This is your safety net

About The Flush

OpenMP Overview
Christian Terboven

12

 Several constructs have an implied barrier
This is another safety net (has implied flush by the way)

 In some cases, the implied barrier can be left out
through the “nowait” clause

 This can help fine tuning the application
But you’d better know what you’re doing

 The explicit barrier comes in quite handy then

The OpenMP Barrier

!$omp barrier#pragma omp barrier

OpenMP Overview
Christian Terboven

13

 To minimize synchronization, some directives
support the optional nowait clause
If present, threads do not synchronize/wait at the end of

that particular construct
 In C, it is one of the clauses on the pragma
 In Fortran, it is appended at the closing part of the

construct

The Nowait Clause

!$omp do
:
:

!$omp end do nowait

#pragma omp for nowait
{

:
}

	OpenMP Tutorial
	OpenMP Overview
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13

