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Vision

The multicore and memory 
revolution
– ISA leak … 
– Plethora of architectures

• Heterogeneity
• Memory hierarchies

Complexity +
+ variability =
= Divergence …
– … between our mental models and 

actual system behavior

Applications
Applications

ISA / API

The power wall made us go multicore 
and the ISA interface to leak  
 our world is shaking 

What programmers need ? HOPE !!!
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The programming revolution

An age changing revolution

– From the latency age …
• I need something … I need it now !!! 
• Performance dominated by latency in a broad sense

– At all levels: sequential and parallel  
– Memory and communication, control flow, synchronizations

– …to the throughput age 
• Ability to instantiate “lots” of work and avoid stalling for specific requests 

– I need this and this and that … and as long as it keeps coming I am ok
– (Much broader interpretation than just GPU computing  !!)

• Performance dominated by overall availability/balance of resources
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Re introduce “seny”
Decouple, insight
A quiet revolution

Vision: direction ?

Intelligent runtime 
Parallelization
Data management,
Dynamic resource management 
Interoperability
Coordination with OS, …

General purpose
Task based
Concurrency + data

Program logic
independent of 
computing platform
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STARSS
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History / Strategy

SMPSs V2
~2009

GPUSs
~2009

CellSs
~2006

SMPSs V1
~2007

PERMPAR
~1994

GridSs
~2002

COMPSs
~2007

COMPSs
ServiceSs

~2010

COMPSs
ServiceSs
PyCOMPSs

~2013

OmpSs
~2009

OpenMP …           3.0         ….            4.0   ….        5.0 

StarSs
~2008

DDT @
Parascope
~1992

2008 2013 2017

Forerunner of OpenMP

OmpSs v2
~2016

NANOS
~1996
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Key concept
– Sequential task based program on single address/name space   + 

directionality annotations
– Happens to execute parallel: Automatic run time computation of 

dependencies between tasks

Differentiation of StarSs
– Dependences: Tasks instantiated but not ready. Order IS defined

• Lookahead
– Avoid stalling the main control flow when a computation depending on previous 

tasks is reached
– Possibility to “see” the future searching for further potential concurrency

• Dependences built from data access specification
– Locality aware

• Without defining new concepts
– Homogenizing heterogeneity

• Device specific tasks but homogeneous program logic

The StarSs family of programming models
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Parallel     Ensemble, workflow

The StarSs “Granularities”

StarSs

OmpSs COMPSs
PyCOMPSs

@ SMP @ GPU @ Cluster

Average task Granularity:

100 microseconds – 10 milliseconds                    1second  - 1 day

Language binding:

C, C++, FORTRAN                                               Java, Python

Address space to compute dependences:

Memory                                                                Files, Objects (SCM)
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OMPSS
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OmpSs

Experimental platform
– Compiler, runtime, applications

Forerunner for OpenMP
– ”extending” OpenMP
– “following” OpenMP

Minimalist set of concepts …
– … relaxing StarSs functional model
– … still looking for elegance and fundamentals
– … aggressively give “power to the runtime”
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OmpSs in one slide

Minimalist set of concepts …

#pragma omp task [ in (array_spec, l_values...)] [ out (...)] [ inout (…, v[neigh[j]], j=0;n)]) \
[ concurrent (…)] [commutative(...)] [ priority(P) ] [ label(...) ] \
[ shared(...)][private(...)][firstprivate(...)][default(...)][untied] \
[final(expr)][if (expression)] \
[reduction(identifier : list)] \
[resources(…)]

{code block or function}

#pragma omp taskwait [ { in | out | inout } (...) ] [noflush]

#pragma omp target device ({ smp | opencl | cuda })     \
[ implements ( function_name )]                  \
[ copy_deps | no_copy_deps ] [ copy_in ( array_spec ,...)] [ copy_out (...)] [ copy_inout (...)] } \
[ndrange (dim, …)] [shmem(...) ]

#pragma omp taskloop [grainsize(…) ] [num_tasks(…) [nogroup] [ in (...)] [reduction(identifier : list)]
{for_loop}

E. Ayguade, et al,  “A Proposal to Extend the OpenMP Tasking Model for Heterogeneous Architectures” IWOMP 2009 & IJPP

A. Duran, et al, “Extending the OpenMP Tasking Model to Allow Dependent Tasks” IWOMP 2008, LNCS & IJPP

Color code: OpenMP, influenced OpenMP, pushing, not yet
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OpenMP compatibility

Follow OpenMP syntax
– For adopted OmpSs features
– Adapt semantics for OpenMP features. Ensure High compatibility

#pragma omp parallel    // ignore

#pragma omp for [ shared(...)][private(...)][firstprivate(...)][schedule_clause]   // ≈ taskloop
{for_loop}

#pragma omp task [depend (type: list)]
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Dependences vs OpenMP

Regions
– Runtime versions  that handle partial overlap. 
– Overhead but useful.

l_values
– Mechanisms to reintroduce size if used with regions

Commutative, concurrent 
– relaxed inouts: possible reorders between those in a linear chain

Reductions
– Concurrent + privatization + associative & commutative operation

Multidependences
– Variable number of in/outs

in (*p)

in (a[i:j])

in ([size]*p)

in ( v[neigh[j]], j=0;n)] )
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Regions

void gs (float A[(NB+2)*BS][(NB+2)*BS])
{
int it,i,j;

for (it=0; it<NITERS; it++)
for (i=0; i<N-2; i+=BS)
for (j=0; j<N-2; j+=BS)
gs_tile(&A[i][j]);

}
#pragma omp task \
in(A[0][1;BS], A[BS+1][1;BS], \

A[1;BS][0], A[1:BS][BS+1]) \
inout(A[1;BS][1;BS])

void gs_tile (float A[N][N])
{
for (int i=1; i <= BS; i++)
for (int j=1; j <= BS; j++)
A[i][j] = 0.2*(A[i][j] + A[i-1][j] + 

A[i+1][j] + A[i][j-1] + 
A[i][j+1]);

} J.M. Perez et al, “Handling task dependencies under strided and aliased references”  ICS 2010
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inout

sum

sum

sum

sum

...

BS

vec

print

...

for (int j; j<N; j+=BS){

actual_size = (N- j> BS ? BS: N-j);

#pragma omp task in(vec[j;actual_size]) inout(result)
for (int count = 0; count < actual_size; count ++, j++)

result += f(&vec[j], actual_size) ;
}
#pragma omp task input (result)
printf (“TOTAL is %d\n”, result);
#pragma omp taskwait
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Concurrent

...

BS

vec

for (int j; j<N; j+=BS){

actual_size = (N- j> BS ? BS: N-j);

#pragma omp task in(vec[j;actual_size]) concurrent(result)
for (int count = 0; count < actual_size; count ++, j++) {

#pragma omp atomic
result += f(&vec[j], actual_size) ; }

}
#pragma omp task input (result)
printf (“TOTAL is %d\n”, result);
#pragma omp taskwait

sum
sum sum

print

sum
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Commutative

sum

sum

sum

sum

...

BS

vec

print

...

Tasks executed 
out of order but 
not concurrently

for (int j; j<N; j+=BS){

actual_size = (N- j> BS ? BS: N-j);

#pragma omp task in(vec[j;actual_size]) commutative(result)
for (int count = 0; count < actual_size; count ++, j++)

result += f(&vec[j], actual_size) ;
}
#pragma omp task input (result)
printf (“TOTAL is %d\n”, result);
#pragma omp taskwait

No mutual 
exclusion required
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Concurrent, Commutative

Flexibility in execution orders
– Many other tasks can interleave

– Still maintain individual 
dependence relationships 
between tasks involved in the 
inout chain and the “outside 
world”

– May be interprocedural

sum

sum

sum

sum

print

...
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Task reductions

Task reductions
– While-loops, recursions

Ciesko, J., et al. “Task-Parallel Reductions in OpenMP and 
OmpSs”, IWOMP 2014

while (node) {
#pragma omp task \

reduction(+: res)
res += node->value;

node = node->next;
}
#pragma omp task inout(res)
printf(“value: %d\n”, res);

#pragma omp taskwait

Ciesko, J., et al. “Towards task-parallel reductions in OpenMP”, IWOMP 2015

OmpSs #pragma omp parallel
{
#pragma omp single
{

#pragma omp taskgroup \
reduction(+: res) \
firstprivate (node)

{ while (node) {
#pragma omp task \

in_reduction(+: res) 
res += node->value;

node = node->next;
}
printf(“value: %d\n”, res);

}
}

}

OpenMP
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Task reductions

Array reductions
– Typical pattern: reductions on large 

arrays with indirection

Implementation
– Privatization becomes inefficient 

when scaling cores and data size
– Atomics can introduce significant 

overhead
– PIBOR Proposal: Privatization with 

in-lined block-ordered reductions
• Save footprint
• Trade processor cycles for locality

– Generalization of implementations
• Inspector executor based, …

Ciesko, J., et al. “Boosting Irregular Array Reductions through 
In-lined Block-ordering on Fast Processors”, HPEC15

for (auto t : tasks){
#pragma task \

reduction (+:v[0:size]) \
private (j)

for (auto i : taskIters) {
j= f(i);
v[j] += expression; 

}
}
#pragma taskwait

C++11 
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Homogenizing Heterogeneity

ISA heterogeneity
Single address space program … executes in several non 
coherent address spaces
– Copy clauses: 

• ensure sequentially consistent copy accessible in the address space where 
task is going to be executed

• Requires precise specification of data accessed (e.g. array sections) 
– Runtime offloads data and computation and manages consistency

Kernel based programming
– Separation of iteration space identification and loop body

#pragma omp taskwait [ on (...) ][noflush]

#pragma omp target device ({ smp | opencl | cuda })     \
[ copy_deps | no_copy_deps ] [ copy_in ( array_spec ,...)] [ copy_out (...)] [ copy_inout (...)] } \
[ implements ( function_name )]                  \
[shmem(...) ] \
[ndrange (dim, g_array, l_array)]
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OmpSs@CUDA/OpenCL

Automatic memory management and kernel synchronization

double A[1024], B[1024], C[1024]
double D[1024], E[1024];

main(){
…
scale_task_cuda(A, B, 10.0, 1024); //T1
scale_task_cuda(B, A, 0.01, 1024); //T2
scale_task (C, A, 2.0, 1024);      //T3
scale_task_cuda (D, E, 5.0, 1024); //T4
scale_task_cuda(B, C, 3.0, 1024);  //T5

#pragma omp taskwait
// can access any of A,B,C,D,E

}

main.c

#pragma target device (smp) copy_deps
#pragma omp task input ([size] c) output ([size] b)
void scale_task (double *b, double *c, double scalar, int size)
{

for (int j=0; j < size; j++) b[j] = scalar*c[j];
}

#pragma target device (cuda) copy_deps ndrange(1, size, 128)
#pragma omp task input ([size] c) output ([size] b)
__global_ void scale_task_cuda (double *b, double *c, double scalar, int size);

main.c

A, B have to be transferred to device before task execution

A, has to be transferred to host. 
Can be done in parallel with T2

D, E, have to be transferred to GPU. 
Can be done at the very beginning

C has to be transferred to GPU. 
Can be done when T3 finishes

Copy A, B, D back to host 

No data transfer. Will execute after T1
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Homogenizing Heterogeneity

#pragma omp target device(opencl) ndrange(1,size,128) copy_deps implements (calculate_forces)
#pragma omp task out([size] out) in([npart] part)
__kernel void calculate_force_opencl(int size, float time,  int npart, __global Part* part, 

__global Part* out, int gid);

#pragma omp target device(cuda) ndrange(1,size,128) copy_deps implements (calculate_forces)
#pragma omp task out([size] out) in([npart] part)
__global__ void calculate_force_cuda(int size, float time,  int npar, Part* part, Particle *out, int gid);

#pragma omp target device(smp) copy_deps
#pragma omp task out([size] out) in([npart] part)
void calculate_forces(int size, float time,  int npart, Part* part, Particle *out, int gid);

void Particle_array_calculate_forces(Particle* input, Particle *output, int npart, float time) {
for (int i = 0; i < npart; i += BS )

calculate_forces(BS, time, npart, input, &output[i], i);
}
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MACC (Mercurium ACcelerator Compiler)

“OpenMP 4.0 accelerator directives” compiler
– Generates OmpSs code + CUDA kernels (for Intel & Power8 + GPUs)
– Propose clauses that improve kernel performance

Extended semantics
– Change in mentality … minor details make a difference
– Dynamic parallelism

G. Ozen et al, “On the roles of the programmer, the 
compiler and the runtime system when facing 
accelerators in OpenMP 4.0” IWOMP 2014

Type of device

DO transfer
Specific device

Ensure  availability

G. Ozen et al, “Multiple Target Work-sharing support for 
the OpenMP Accelerator Model” submitted
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Interoperability:  MPI and OmpSs

Taskifying MPI calls

Potential issues
– Deadlocks if blocking resources

•  virtualize MPI engine
• Nanos6 on pthreads, argobots,…

– Matching if executed out of order

Throughput oriented 
Opportunity

– Overlap between phases
• Grid and frequency domain

– Provide laxity for communications
• Tolerate poorer communication

– Shift load balance issue
• Eliminate serialization
• Increase granularity

– Huge flexibility for changing 
behavior with minimal syntactic 
changes

physics ffts

IFS weather code kernel. ECMRWF

V. Marjanovic, et al, “Overlapping Communication and Computation 
by using a Hybrid MPI/SMPSs Approach”  ICS 2010
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Hybrid Amdahl’s law

A fairly “bad message” for programmers
Significant non parallelized part
– MPI calls + pack/unpack

MPI + OmpSs: Hope for lazy programmers

for ()
pack
irecv
isend

wait all sends
for ()

test
unpack    

MAXW-DGTD

1 thread/process

2 thread/process
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MPI offload

Reverse 
offload

CASE/REPSOL FWI
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COMPILER AND RUNTIME
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Scheduling

Locality aware scheduling
– Affinity to core/node/device can be computed based on pragmas and 

knowledge of where was data
– Following dependences reduces data movement
– Interaction between locality and load balance (work-stealing)

Some “reasonable” criteria
– Task instantiation order is typically a fair criteria
– Honor previous scheduling decisions when using nesting

• Ensure a minimum amount of resources
• Prioritize continuation of a father task in a taskwait when synchronization 

fulfilled

R. Al-Omairy et al, “Dense Matrix Computations on NUMA 
Architectures with Distance-Aware Work Stealing.”  SuperFRI 2015
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Criticality-awareness in heterogeneous architectures

Heterogeneous multicores
– ARM big.LITTLE 4 A-15@2GHz; 4A-7@1.4GHz
– Tasksim simulator: 16-256 cores; 2-4x

Runtime approximation of critical path
– Implementable, small overhead that pay off
– Approximation is enough

Higher benefits the more cores, the more big 
cores, the higher performance ratio

K. Chronaki et al, “Criticality-Aware Dynamic Task Scheduling for Heterogeneous Architectures.”  ICS 2015



3131

Implicit specification and automatic 
management (transfers, caching, 
coherence)
Automatic association management
– Workarrays & Reshaping

void Cholesky (int N, int BS, float A[N][N]) {
for (int j = 0; j < N; j+=BS) {

for (int k= 0; k< j; k+=BS)
for (int i = j+BS; i < N; i+=BS) 

sgemm_tile(BS, N, &A[k][i], &A[k][j], 
&A[j][i]);

for (int i = 0; i < j; i+=BS)
ssyrk_tile(BS, N, &A[i][j], &A[j][j]);

spotrf_tile(BS, N, &A[j][j]); 
for (int i = j+BS; i < N; i+=BS)

strsm_tile(BS, N, &A[j][j], &A[j][i]);
}

}#pragma css task input(T{0:BS}{0:BS}, BS, N) inout(B{0:BS}{0:BS})
void strsm_tile(integer BS, integer N, float T[N][N], float B[N][N]) {

unsigned char LO='L', TR='T', NU='N', RI='R';
float DONE=1.0;
integer LDT = sizeof(*T)/sizeof(float);
integer LDB = sizeof(*B)/sizeof(float);
strsm_(&RI, &LO, &TR, &NU, &BS, &BS, &DONE, T, &LDT, B, &LDB);

}
Using MKL kernels/tiles

0

25,6

51,2

76,8

102,4

128

153,6

179,2

204,8

0 4 8 12 16 20 24 28 32

G
Fl

op
s

Threads

MKL 8.1

MKL 9.1

MKL 10.1.0.015

MKL 10.1.1.019

SMPSS
Reshaping NUMA

SMPS - MUMA

SMPS 
interleaved 

memory 
allocation

SMPS first touch 
serial initialization

MKL 10.1

Memory management
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OmpSs: the potential of data access information 

Highly NUMA machine

– Asynchrony with serialized 
initialization

– Effect of parallel initialization and 
first touch

– Copy to workarray. Change of 
association

– NUMA aware workarray allocation

IPC histogram
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FPGAs

Just another 
heterogeneous device
Experiments @ Zynq
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Device management mechanisms

Improvements in runtime mechanisms
– Use of multiple streams
– High asynchrony and overlap (transfers and 

kernels)
– Overlap kernels
– Take overheads out of the critical path

Improvement in schedulers
– Late binding of locality aware decisions
– Propagate priorities

J. Planas et al, “AMA: Asynchronous Management of Accelerators for Task-based Programming Models.”  ICCS 2015

Nbody Cholesky
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Dynamic Load Balancing

Dynamically shift cores between processes in node
– Enabled by application malleability (task based)
– Runtime in control (sees what happens and the future)
– Would greatly benefit from OS support (handoff scheduling, fast 

context switching)

“LeWI: A Runtime Balancing Algorithm for Nested Parallelism”. M.Garcia et al. ICPP09
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THE REAL REVOLUTION
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The real revolution
Task based

– OpenMP OK

“Proper” model does not guarantee “proper” programs
– Flexibility  can be used “wrong”
– Possible to write an MPI program in OpenMP syntax

Revolution: is in the mindset of programmers
– “Forget” about hardware, resources

• rely on the runtime – system
– Focus on program logic
– Methodology

• Top down programming methodology
• Throughput oriented: 

– try not to stall !
– First order, then overhead

• Think global:
– of potentials rather than how-to’s
– may be unprecise

• Specify local:
– needs and outcomes of the functionality being written
– precise
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Programming practices

What to avoid
– Threads

• Omp_num_threads
• Thread_private
• Parallel, barrier

– separate parallel and serial implementation
– Ifdefs
– Infer too much from scaling plots
– Worry too early about actual performance

What to try
– Top down & nesting
– Lookahead

• synchronizing tasks, handle control flow dependences
– Malleability
– Taskify communications

• Overlap computation, other communications, shift critical path

foo() {
if  (small) for(;;) {…};
else {

#pragma omp parallel for
for(;;) {…};

}
}
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Examples

Applications
– PARSECS
– Nt-chem
– Alya
– Lulesh
– IFSkernel
– Quantum Expreso
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PARSEC benchmark ported to OmpSs

Initial port from pthreads to OmpSs and optimization
Bodytrack Ferret

“D
ire

ct
”

0-
10

0-
25

0

D. Chasapis et al , “Exploring the Impact of Task Parallelism Beyond the PARSEC benchmark suite” TACO’2016

“o
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”

0-
30

0-
30
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Electronic structure calculation
RIKEN FIBER miniapp

1:    RIMP2_RMP2Energy_InCore_V_MPIOMP ()
…

405:       DO LNumber_Base
…

498:             DGEMM
…

518:             if (something)
{    wait ;                   // for current iteration

Isend, Irecv;        // for next iteration
}

allreduce
588:             Do loops 

reduction MP2 correlation
636:             END DO

ENDO

imp2_rmp2energy_incore_v_mpiomp.F90

Nt-chem
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Original: Hybrid MPI + OpenMP

mn3: Scalability

High overhead, fine granularity 
@ large threading count

Not fully populated node  system 
activates TurboBoost increasing 
frequency from 2.6 to 3.1GHz

Load imbalance
Global
Serialization

Noise

Some gain @ low threading count
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Nt-chem

Load imbalance
– Global
– Migrating load imbalance, Serialization

Asynchrony: non blocking MPI calls

64

128

256

384
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mn3 : OmpSs taskification
Taskify
– Serial DGEMMs. 

• Coarser granularity than 
original OpenMP

– Reduction loops
• Not parallelized in original?
• Serial task

– Communications
• Overlap, but fixed schedule in 

original source

Outcome
– Possible with limited 

understanding of global 
application

– Happen to be fairly 
independent

1:    RIMP2_RMP2Energy_InCore_V_MPIOMP ()
…

405:       DO LNumber_Base
…

498:             DGEMM
…

518:             if (something)
{    wait ;                   // for current iter.

Isend, Irecv;        // for next iter.
}

allreduce
588:             Do loops 

Evaluating MP2 correlation
636:             END DO

ENDO

imp2_rmp2energy_incore_v_mpiomp.F90
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mn3 : OmpSs taskification

Performance gain
– Sufficient task granularity
– Communication computation overlap
– Still measuring numbers with DLB
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Analyses

Trace MPI + OmpSs, 4 x 4
Stalls:
– Interaction throttling ↔ scheduling 

↔ loose dependence chains
– Prioritize communication tasks

Concurrent MPI tasks
– ~ commutative send/rec tasks

• only one thread executes MPI, 
avoid contention …

• … but still contention with 
allreduces !

Task generation overhead 
– Reduce number of tasks

• Separate send and receive tasks 
 MPI_send_rec

• Increase DGEMM size, reduce 
#tasks  (WIP) 
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Alya

FE + Particles

Important imbalance
– ~ unpredictable, not fixable at domain 

decomposition level

By hybrid programming
– Reduce processes  less imbalance

• Sequential performance?
• “Hybrid Amdahl’s law”?

– Still imbalance
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Matrix Assembly

Reduction on large matrix with indirection

#pragma omp parallel for
compute()
#pragma omp atomic
update()

}
}

Specify incompatibilities !!!
Commutative 

+ 
multidependences
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Sequential performance

Parallelization of indirect reduction on large object
– Impact on IPC
– Still load imbalance

atomics

coloring

Commutative
multideps

+ priority
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Dynamic load balance

DLB
– Across MPI processes
– Within a node
– 14% gain (38.5% over 

coloring)

Side effects
– Frequently imbalance 

concentrated in contiguous 
processes

– Suggestion:
• Interleave processes

– Result:
• Better Pure MPI 

performance !!!

Commutative multideps
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Processes & Threads

Throughput computing
– Malleability (tasks) + DLB 

flat lines

DLB helps in all cases
– Even more in the bad ones 

Side effect
– Hybrid Nx1 can be better             

than pure MPI    !!!

Assembly phase

Subscale phase

16 nodes x P processes/node x T threads/process
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Granularity

Fairly wide range of 
good granularities

 Throughput 
computing

Assembly phase

Subscale phase

64 nodes x 16 processes/node x 1 threads/process
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CONCLUSION
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OmpSs

Other features
– Memory hierarchy management
– Nesting/recursion
– Criticality and locality aware scheduling
– Multiple implementations for a given task
– CUDA, OpenCL, accelerator directives, FPGA, Cluster
– Resilience
– Real time
– …

Commitment: forerunner for OpenMP
– Continuous development and use since 2004
– Pushing ideas into the OpenMP standard
– Developer Positioning: efforts in OmpSs will not be lost. 
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What is important? Methodology
The revolution requires a programming effort

– Must make the transition it as simple as possible
– Must make it as long lived as possible

Top down !!
– Every level contributes
– Nesting
– Think global, specify local

Throughput oriented, asynchrony, do not stall
– Granularity: stay within large plateau of “good” performance
– Try to avoid predefined schedule of synchronizing operations
– Try to avoid “machine” specificities

First order and flexible decomposition, then overhead

Malleability / Responsiveness

Incremental:
– Only where needed (e.g only taskify to enable DLB, overlap,…)

Show your code, look at others code, don’t get just dazzled by performance

Do not fly blind
– Very aggregated statistics may not be enough to gain the insight on actual behavior

Dynamic
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The real parallel programming revolution …

… is in the mindset of programmers

… is to rely on the runtime and system

https://pm.bsc.es/ompss-downloads
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