
1

www.bsc.es

Keynote @ IWOMP 2016
Nara, October 7th 2016

Jesús Labarta
BSC

From the latency to the throughput age

22

Vision

The multicore and memory
revolution
– ISA leak …
– Plethora of architectures

• Heterogeneity
• Memory hierarchies

Complexity +
+ variability =
= Divergence …
– … between our mental models and

actual system behavior

Applications
Applications

ISA / API

The power wall made us go multicore
and the ISA interface to leak
 our world is shaking

What programmers need ? HOPE !!!

33

The programming revolution

An age changing revolution

– From the latency age …
• I need something … I need it now !!!
• Performance dominated by latency in a broad sense

– At all levels: sequential and parallel
– Memory and communication, control flow, synchronizations

– …to the throughput age
• Ability to instantiate “lots” of work and avoid stalling for specific requests

– I need this and this and that … and as long as it keeps coming I am ok
– (Much broader interpretation than just GPU computing !!)

• Performance dominated by overall availability/balance of resources

44

Re introduce “seny”
Decouple, insight
A quiet revolution

Vision: direction ?

Intelligent runtime
Parallelization
Data management,
Dynamic resource management
Interoperability
Coordination with OS, …

General purpose
Task based
Concurrency + data

Program logic
independent of
computing platform

5

STARSS

6 66

History / Strategy

SMPSs V2
~2009

GPUSs
~2009

CellSs
~2006

SMPSs V1
~2007

PERMPAR
~1994

GridSs
~2002

COMPSs
~2007

COMPSs
ServiceSs

~2010

COMPSs
ServiceSs
PyCOMPSs

~2013

OmpSs
~2009

OpenMP … 3.0 …. 4.0 …. 5.0

StarSs
~2008

DDT @
Parascope
~1992

2008 2013 2017

Forerunner of OpenMP

OmpSs v2
~2016

NANOS
~1996

77

Key concept
– Sequential task based program on single address/name space +

directionality annotations
– Happens to execute parallel: Automatic run time computation of

dependencies between tasks

Differentiation of StarSs
– Dependences: Tasks instantiated but not ready. Order IS defined

• Lookahead
– Avoid stalling the main control flow when a computation depending on previous

tasks is reached
– Possibility to “see” the future searching for further potential concurrency

• Dependences built from data access specification
– Locality aware

• Without defining new concepts
– Homogenizing heterogeneity

• Device specific tasks but homogeneous program logic

The StarSs family of programming models

88

Parallel Ensemble, workflow

The StarSs “Granularities”

StarSs

OmpSs COMPSs
PyCOMPSs

@ SMP @ GPU @ Cluster

Average task Granularity:

100 microseconds – 10 milliseconds 1second - 1 day

Language binding:

C, C++, FORTRAN Java, Python

Address space to compute dependences:

Memory Files, Objects (SCM)

9

OMPSS

1010

OmpSs

Experimental platform
– Compiler, runtime, applications

Forerunner for OpenMP
– ”extending” OpenMP
– “following” OpenMP

Minimalist set of concepts …
– … relaxing StarSs functional model
– … still looking for elegance and fundamentals
– … aggressively give “power to the runtime”

1111

OmpSs in one slide

Minimalist set of concepts …

#pragma omp task [in (array_spec, l_values...)] [out (...)] [inout (…, v[neigh[j]], j=0;n)]) \
[concurrent (…)] [commutative(...)] [priority(P)] [label(...)] \
[shared(...)][private(...)][firstprivate(...)][default(...)][untied] \
[final(expr)][if (expression)] \
[reduction(identifier : list)] \
[resources(…)]

{code block or function}

#pragma omp taskwait [{ in | out | inout } (...)] [noflush]

#pragma omp target device ({ smp | opencl | cuda }) \
[implements (function_name)] \
[copy_deps | no_copy_deps] [copy_in (array_spec ,...)] [copy_out (...)] [copy_inout (...)] } \
[ndrange (dim, …)] [shmem(...)]

#pragma omp taskloop [grainsize(…)] [num_tasks(…) [nogroup] [in (...)] [reduction(identifier : list)]
{for_loop}

E. Ayguade, et al, “A Proposal to Extend the OpenMP Tasking Model for Heterogeneous Architectures” IWOMP 2009 & IJPP

A. Duran, et al, “Extending the OpenMP Tasking Model to Allow Dependent Tasks” IWOMP 2008, LNCS & IJPP

Color code: OpenMP, influenced OpenMP, pushing, not yet

1212

OpenMP compatibility

Follow OpenMP syntax
– For adopted OmpSs features
– Adapt semantics for OpenMP features. Ensure High compatibility

#pragma omp parallel // ignore

#pragma omp for [shared(...)][private(...)][firstprivate(...)][schedule_clause] // ≈ taskloop
{for_loop}

#pragma omp task [depend (type: list)]

1313

Dependences vs OpenMP

Regions
– Runtime versions that handle partial overlap.
– Overhead but useful.

l_values
– Mechanisms to reintroduce size if used with regions

Commutative, concurrent
– relaxed inouts: possible reorders between those in a linear chain

Reductions
– Concurrent + privatization + associative & commutative operation

Multidependences
– Variable number of in/outs

in (*p)

in (a[i:j])

in ([size]*p)

in (v[neigh[j]], j=0;n)])

1414

Regions

void gs (float A[(NB+2)*BS][(NB+2)*BS])
{
int it,i,j;

for (it=0; it<NITERS; it++)
for (i=0; i<N-2; i+=BS)
for (j=0; j<N-2; j+=BS)
gs_tile(&A[i][j]);

}
#pragma omp task \
in(A[0][1;BS], A[BS+1][1;BS], \

A[1;BS][0], A[1:BS][BS+1]) \
inout(A[1;BS][1;BS])

void gs_tile (float A[N][N])
{
for (int i=1; i <= BS; i++)
for (int j=1; j <= BS; j++)
A[i][j] = 0.2*(A[i][j] + A[i-1][j] +

A[i+1][j] + A[i][j-1] +
A[i][j+1]);

} J.M. Perez et al, “Handling task dependencies under strided and aliased references” ICS 2010

151515

inout

sum

sum

sum

sum

...

BS

vec

print

...

for (int j; j<N; j+=BS){

actual_size = (N- j> BS ? BS: N-j);

#pragma omp task in(vec[j;actual_size]) inout(result)
for (int count = 0; count < actual_size; count ++, j++)

result += f(&vec[j], actual_size) ;
}
#pragma omp task input (result)
printf (“TOTAL is %d\n”, result);
#pragma omp taskwait

161616

Concurrent

...

BS

vec

for (int j; j<N; j+=BS){

actual_size = (N- j> BS ? BS: N-j);

#pragma omp task in(vec[j;actual_size]) concurrent(result)
for (int count = 0; count < actual_size; count ++, j++) {

#pragma omp atomic
result += f(&vec[j], actual_size) ; }

}
#pragma omp task input (result)
printf (“TOTAL is %d\n”, result);
#pragma omp taskwait

sum
sum sum

print

sum

171717

Commutative

sum

sum

sum

sum

...

BS

vec

print

...

Tasks executed
out of order but
not concurrently

for (int j; j<N; j+=BS){

actual_size = (N- j> BS ? BS: N-j);

#pragma omp task in(vec[j;actual_size]) commutative(result)
for (int count = 0; count < actual_size; count ++, j++)

result += f(&vec[j], actual_size) ;
}
#pragma omp task input (result)
printf (“TOTAL is %d\n”, result);
#pragma omp taskwait

No mutual
exclusion required

18

Concurrent, Commutative

Flexibility in execution orders
– Many other tasks can interleave

– Still maintain individual
dependence relationships
between tasks involved in the
inout chain and the “outside
world”

– May be interprocedural

sum

sum

sum

sum

print

...

1919

Task reductions

Task reductions
– While-loops, recursions

Ciesko, J., et al. “Task-Parallel Reductions in OpenMP and
OmpSs”, IWOMP 2014

while (node) {
#pragma omp task \

reduction(+: res)
res += node->value;

node = node->next;
}
#pragma omp task inout(res)
printf(“value: %d\n”, res);

#pragma omp taskwait

Ciesko, J., et al. “Towards task-parallel reductions in OpenMP”, IWOMP 2015

OmpSs #pragma omp parallel
{
#pragma omp single
{

#pragma omp taskgroup \
reduction(+: res) \
firstprivate (node)

{ while (node) {
#pragma omp task \

in_reduction(+: res)
res += node->value;

node = node->next;
}
printf(“value: %d\n”, res);

}
}

}

OpenMP

2020

Task reductions

Array reductions
– Typical pattern: reductions on large

arrays with indirection

Implementation
– Privatization becomes inefficient

when scaling cores and data size
– Atomics can introduce significant

overhead
– PIBOR Proposal: Privatization with

in-lined block-ordered reductions
• Save footprint
• Trade processor cycles for locality

– Generalization of implementations
• Inspector executor based, …

Ciesko, J., et al. “Boosting Irregular Array Reductions through
In-lined Block-ordering on Fast Processors”, HPEC15

for (auto t : tasks){
#pragma task \

reduction (+:v[0:size]) \
private (j)

for (auto i : taskIters) {
j= f(i);
v[j] += expression;

}
}
#pragma taskwait

C++11

2121

Homogenizing Heterogeneity

ISA heterogeneity
Single address space program … executes in several non
coherent address spaces
– Copy clauses:

• ensure sequentially consistent copy accessible in the address space where
task is going to be executed

• Requires precise specification of data accessed (e.g. array sections)
– Runtime offloads data and computation and manages consistency

Kernel based programming
– Separation of iteration space identification and loop body

#pragma omp taskwait [on (...)][noflush]

#pragma omp target device ({ smp | opencl | cuda }) \
[copy_deps | no_copy_deps] [copy_in (array_spec ,...)] [copy_out (...)] [copy_inout (...)] } \
[implements (function_name)] \
[shmem(...)] \
[ndrange (dim, g_array, l_array)]

2222

OmpSs@CUDA/OpenCL

Automatic memory management and kernel synchronization

double A[1024], B[1024], C[1024]
double D[1024], E[1024];

main(){
…
scale_task_cuda(A, B, 10.0, 1024); //T1
scale_task_cuda(B, A, 0.01, 1024); //T2
scale_task (C, A, 2.0, 1024); //T3
scale_task_cuda (D, E, 5.0, 1024); //T4
scale_task_cuda(B, C, 3.0, 1024); //T5

#pragma omp taskwait
// can access any of A,B,C,D,E

}

main.c

#pragma target device (smp) copy_deps
#pragma omp task input ([size] c) output ([size] b)
void scale_task (double *b, double *c, double scalar, int size)
{

for (int j=0; j < size; j++) b[j] = scalar*c[j];
}

#pragma target device (cuda) copy_deps ndrange(1, size, 128)
#pragma omp task input ([size] c) output ([size] b)
__global_ void scale_task_cuda (double *b, double *c, double scalar, int size);

main.c

A, B have to be transferred to device before task execution

A, has to be transferred to host.
Can be done in parallel with T2

D, E, have to be transferred to GPU.
Can be done at the very beginning

C has to be transferred to GPU.
Can be done when T3 finishes

Copy A, B, D back to host

No data transfer. Will execute after T1

23

Homogenizing Heterogeneity

#pragma omp target device(opencl) ndrange(1,size,128) copy_deps implements (calculate_forces)
#pragma omp task out([size] out) in([npart] part)
__kernel void calculate_force_opencl(int size, float time, int npart, __global Part* part,

__global Part* out, int gid);

#pragma omp target device(cuda) ndrange(1,size,128) copy_deps implements (calculate_forces)
#pragma omp task out([size] out) in([npart] part)
__global__ void calculate_force_cuda(int size, float time, int npar, Part* part, Particle *out, int gid);

#pragma omp target device(smp) copy_deps
#pragma omp task out([size] out) in([npart] part)
void calculate_forces(int size, float time, int npart, Part* part, Particle *out, int gid);

void Particle_array_calculate_forces(Particle* input, Particle *output, int npart, float time) {
for (int i = 0; i < npart; i += BS)

calculate_forces(BS, time, npart, input, &output[i], i);
}

2424

MACC (Mercurium ACcelerator Compiler)

“OpenMP 4.0 accelerator directives” compiler
– Generates OmpSs code + CUDA kernels (for Intel & Power8 + GPUs)
– Propose clauses that improve kernel performance

Extended semantics
– Change in mentality … minor details make a difference
– Dynamic parallelism

G. Ozen et al, “On the roles of the programmer, the
compiler and the runtime system when facing
accelerators in OpenMP 4.0” IWOMP 2014

Type of device

DO transfer
Specific device

Ensure availability

G. Ozen et al, “Multiple Target Work-sharing support for
the OpenMP Accelerator Model” submitted

2525

Interoperability: MPI and OmpSs

Taskifying MPI calls

Potential issues
– Deadlocks if blocking resources

•  virtualize MPI engine
• Nanos6 on pthreads, argobots,…

– Matching if executed out of order

Throughput oriented
Opportunity

– Overlap between phases
• Grid and frequency domain

– Provide laxity for communications
• Tolerate poorer communication

– Shift load balance issue
• Eliminate serialization
• Increase granularity

– Huge flexibility for changing
behavior with minimal syntactic
changes

physics ffts

IFS weather code kernel. ECMRWF

V. Marjanovic, et al, “Overlapping Communication and Computation
by using a Hybrid MPI/SMPSs Approach” ICS 2010

2626

Hybrid Amdahl’s law

A fairly “bad message” for programmers
Significant non parallelized part
– MPI calls + pack/unpack

MPI + OmpSs: Hope for lazy programmers

for ()
pack
irecv
isend

wait all sends
for ()

test
unpack

MAXW-DGTD

1 thread/process

2 thread/process

2727

MPI offload

Reverse
offload

CASE/REPSOL FWI

28

COMPILER AND RUNTIME

2929

Scheduling

Locality aware scheduling
– Affinity to core/node/device can be computed based on pragmas and

knowledge of where was data
– Following dependences reduces data movement
– Interaction between locality and load balance (work-stealing)

Some “reasonable” criteria
– Task instantiation order is typically a fair criteria
– Honor previous scheduling decisions when using nesting

• Ensure a minimum amount of resources
• Prioritize continuation of a father task in a taskwait when synchronization

fulfilled

R. Al-Omairy et al, “Dense Matrix Computations on NUMA
Architectures with Distance-Aware Work Stealing.” SuperFRI 2015

3030

Criticality-awareness in heterogeneous architectures

Heterogeneous multicores
– ARM big.LITTLE 4 A-15@2GHz; 4A-7@1.4GHz
– Tasksim simulator: 16-256 cores; 2-4x

Runtime approximation of critical path
– Implementable, small overhead that pay off
– Approximation is enough

Higher benefits the more cores, the more big
cores, the higher performance ratio

K. Chronaki et al, “Criticality-Aware Dynamic Task Scheduling for Heterogeneous Architectures.” ICS 2015

3131

Implicit specification and automatic
management (transfers, caching,
coherence)
Automatic association management
– Workarrays & Reshaping

void Cholesky (int N, int BS, float A[N][N]) {
for (int j = 0; j < N; j+=BS) {

for (int k= 0; k< j; k+=BS)
for (int i = j+BS; i < N; i+=BS)

sgemm_tile(BS, N, &A[k][i], &A[k][j],
&A[j][i]);

for (int i = 0; i < j; i+=BS)
ssyrk_tile(BS, N, &A[i][j], &A[j][j]);

spotrf_tile(BS, N, &A[j][j]);
for (int i = j+BS; i < N; i+=BS)

strsm_tile(BS, N, &A[j][j], &A[j][i]);
}

}#pragma css task input(T{0:BS}{0:BS}, BS, N) inout(B{0:BS}{0:BS})
void strsm_tile(integer BS, integer N, float T[N][N], float B[N][N]) {

unsigned char LO='L', TR='T', NU='N', RI='R';
float DONE=1.0;
integer LDT = sizeof(*T)/sizeof(float);
integer LDB = sizeof(*B)/sizeof(float);
strsm_(&RI, &LO, &TR, &NU, &BS, &BS, &DONE, T, &LDT, B, &LDB);

}
Using MKL kernels/tiles

0

25,6

51,2

76,8

102,4

128

153,6

179,2

204,8

0 4 8 12 16 20 24 28 32

G
Fl

op
s

Threads

MKL 8.1

MKL 9.1

MKL 10.1.0.015

MKL 10.1.1.019

SMPSS
Reshaping NUMA

SMPS - MUMA

SMPS
interleaved

memory
allocation

SMPS first touch
serial initialization

MKL 10.1

Memory management

3232

OmpSs: the potential of data access information

Highly NUMA machine

– Asynchrony with serialized
initialization

– Effect of parallel initialization and
first touch

– Copy to workarray. Change of
association

– NUMA aware workarray allocation

IPC histogram

3333

FPGAs

Just another
heterogeneous device
Experiments @ Zynq

3434

Device management mechanisms

Improvements in runtime mechanisms
– Use of multiple streams
– High asynchrony and overlap (transfers and

kernels)
– Overlap kernels
– Take overheads out of the critical path

Improvement in schedulers
– Late binding of locality aware decisions
– Propagate priorities

J. Planas et al, “AMA: Asynchronous Management of Accelerators for Task-based Programming Models.” ICCS 2015

Nbody Cholesky

3535

Dynamic Load Balancing

Dynamically shift cores between processes in node
– Enabled by application malleability (task based)
– Runtime in control (sees what happens and the future)
– Would greatly benefit from OS support (handoff scheduling, fast

context switching)

“LeWI: A Runtime Balancing Algorithm for Nested Parallelism”. M.Garcia et al. ICPP09

36

THE REAL REVOLUTION

37

The real revolution
Task based

– OpenMP OK

“Proper” model does not guarantee “proper” programs
– Flexibility  can be used “wrong”
– Possible to write an MPI program in OpenMP syntax

Revolution: is in the mindset of programmers
– “Forget” about hardware, resources

• rely on the runtime – system
– Focus on program logic
– Methodology

• Top down programming methodology
• Throughput oriented:

– try not to stall !
– First order, then overhead

• Think global:
– of potentials rather than how-to’s
– may be unprecise

• Specify local:
– needs and outcomes of the functionality being written
– precise

38

Programming practices

What to avoid
– Threads

• Omp_num_threads
• Thread_private
• Parallel, barrier

– separate parallel and serial implementation
– Ifdefs
– Infer too much from scaling plots
– Worry too early about actual performance

What to try
– Top down & nesting
– Lookahead

• synchronizing tasks, handle control flow dependences
– Malleability
– Taskify communications

• Overlap computation, other communications, shift critical path

foo() {
if (small) for(;;) {…};
else {

#pragma omp parallel for
for(;;) {…};

}
}

39

Examples

Applications
– PARSECS
– Nt-chem
– Alya
– Lulesh
– IFSkernel
– Quantum Expreso

4040

PARSEC benchmark ported to OmpSs

Initial port from pthreads to OmpSs and optimization
Bodytrack Ferret

“D
ire

ct
”

0-
10

0-
25

0

D. Chasapis et al , “Exploring the Impact of Task Parallelism Beyond the PARSEC benchmark suite” TACO’2016

“o
pt

im
iz

ed
”

0-
30

0-
30

4141

Electronic structure calculation
RIKEN FIBER miniapp

1: RIMP2_RMP2Energy_InCore_V_MPIOMP ()
…

405: DO LNumber_Base
…

498: DGEMM
…

518: if (something)
{ wait ; // for current iteration

Isend, Irecv; // for next iteration
}

allreduce
588: Do loops

reduction MP2 correlation
636: END DO

ENDO

imp2_rmp2energy_incore_v_mpiomp.F90

Nt-chem

42

Original: Hybrid MPI + OpenMP

mn3: Scalability

High overhead, fine granularity
@ large threading count

Not fully populated node  system
activates TurboBoost increasing
frequency from 2.6 to 3.1GHz

Load imbalance
Global
Serialization

Noise

Some gain @ low threading count

4343

Nt-chem

Load imbalance
– Global
– Migrating load imbalance, Serialization

Asynchrony: non blocking MPI calls

64

128

256

384

44

mn3 : OmpSs taskification
Taskify
– Serial DGEMMs.

• Coarser granularity than
original OpenMP

– Reduction loops
• Not parallelized in original?
• Serial task

– Communications
• Overlap, but fixed schedule in

original source

Outcome
– Possible with limited

understanding of global
application

– Happen to be fairly
independent

1: RIMP2_RMP2Energy_InCore_V_MPIOMP ()
…

405: DO LNumber_Base
…

498: DGEMM
…

518: if (something)
{ wait ; // for current iter.

Isend, Irecv; // for next iter.
}

allreduce
588: Do loops

Evaluating MP2 correlation
636: END DO

ENDO

imp2_rmp2energy_incore_v_mpiomp.F90

45

mn3 : OmpSs taskification

Performance gain
– Sufficient task granularity
– Communication computation overlap
– Still measuring numbers with DLB

46

Analyses

Trace MPI + OmpSs, 4 x 4
Stalls:
– Interaction throttling ↔ scheduling

↔ loose dependence chains
– Prioritize communication tasks

Concurrent MPI tasks
– ~ commutative send/rec tasks

• only one thread executes MPI,
avoid contention …

• … but still contention with
allreduces !

Task generation overhead 
– Reduce number of tasks

• Separate send and receive tasks
 MPI_send_rec

• Increase DGEMM size, reduce
#tasks (WIP)

4747

Alya

FE + Particles

Important imbalance
– ~ unpredictable, not fixable at domain

decomposition level

By hybrid programming
– Reduce processes  less imbalance

• Sequential performance?
• “Hybrid Amdahl’s law”?

– Still imbalance

4848

Matrix Assembly

Reduction on large matrix with indirection

#pragma omp parallel for
compute()
#pragma omp atomic
update()

}
}

Specify incompatibilities !!!
Commutative

+
multidependences

49

Sequential performance

Parallelization of indirect reduction on large object
– Impact on IPC
– Still load imbalance

atomics

coloring

Commutative
multideps

+ priority

50

Dynamic load balance

DLB
– Across MPI processes
– Within a node
– 14% gain (38.5% over

coloring)

Side effects
– Frequently imbalance

concentrated in contiguous
processes

– Suggestion:
• Interleave processes

– Result:
• Better Pure MPI

performance !!!

Commutative multideps

51

Processes & Threads

Throughput computing
– Malleability (tasks) + DLB 

flat lines

DLB helps in all cases
– Even more in the bad ones 

Side effect
– Hybrid Nx1 can be better

than pure MPI !!!

Assembly phase

Subscale phase

16 nodes x P processes/node x T threads/process

52

Granularity

Fairly wide range of
good granularities

 Throughput
computing

Assembly phase

Subscale phase

64 nodes x 16 processes/node x 1 threads/process

53

CONCLUSION

54

OmpSs

Other features
– Memory hierarchy management
– Nesting/recursion
– Criticality and locality aware scheduling
– Multiple implementations for a given task
– CUDA, OpenCL, accelerator directives, FPGA, Cluster
– Resilience
– Real time
– …

Commitment: forerunner for OpenMP
– Continuous development and use since 2004
– Pushing ideas into the OpenMP standard
– Developer Positioning: efforts in OmpSs will not be lost.

5555

What is important? Methodology
The revolution requires a programming effort

– Must make the transition it as simple as possible
– Must make it as long lived as possible

Top down !!
– Every level contributes
– Nesting
– Think global, specify local

Throughput oriented, asynchrony, do not stall
– Granularity: stay within large plateau of “good” performance
– Try to avoid predefined schedule of synchronizing operations
– Try to avoid “machine” specificities

First order and flexible decomposition, then overhead

Malleability / Responsiveness

Incremental:
– Only where needed (e.g only taskify to enable DLB, overlap,…)

Show your code, look at others code, don’t get just dazzled by performance

Do not fly blind
– Very aggregated statistics may not be enough to gain the insight on actual behavior

Dynamic

56

The real parallel programming revolution …

… is in the mindset of programmers

… is to rely on the runtime and system

https://pm.bsc.es/ompss-downloads

5757
57

5858

• Eduard Ayguade
• Rosa M. Badia
• Xavier Martorell
• Vicenç Bertran
• Alex Duran (Intel)
• Roger Ferrer (ARM)
• Xavier Teruel
• Javier Bueno (Metempsy)
• Judit Planas (Lausanne)
• Sergi Mateo
• Carlos Alvarez
• Daniel Jimenez-Gonzalez
• Guillermo Miranda (UPC)
• Diego Caballero (Intel)
• Jorge Bellon
• Antonio Filgueras
• Florentino Sainz (BBVA)

• Diego Nieto (...)
• Victor Lopez
• Marta Garcia
• Josep M. Perez
• Guray Ozen
• Antonio J. Peña
• Julian Morillo
• Sara Royuela
• Marc Josep
• Miquel Vidal
• Kevin Sala
• Marc Mari
• Aimar Rodriguez
• Daniel Peyrolon
• Ferran Pallares
• Albert Navarro
• Toni Navarro
• Omer Subasi

Contributors

• Jan Ciesko
• Marc Casas
• Miquel Moreto
• …

59

THANKS

